Chemistry Letters 1995 769

Preparation and Characterization of Vanadyl Hydrogen Phosphate Hydrates; VO(HPO4)•1.5H2O and VO(HPO4)•0.5H2O

Ikuya Matsuura, Tomohiro Ishimura, and Naomasa Kimura Faculty of Science, Toyama University, Toyama 930

(Received May 16, 1995)

A new phase of vanadyl(IV) hydrogen phosphate sesquihydrate, VO(HPO₄)•1.5H₂O, has been obtained by the reduction of VOPO₄•2H₂O with 1-butanol. The unit cell is the orthorhombic system with lattice constants a=7.43 Å, b=9.62 Å, and c=7.97 Å. in space group P_{mmn} .

Vanadyl pyrophosphate (VO)₂P₂O₇ is an active and selective catalyst for butane oxidatical to maleic anhydride. The catalyst (VO)₂P₂O₇ is formed from its precursor, VO(HPO₄)•0.5H₂O, by heating at 400°C and the precursor might be formed by elimination of water from VO(HPO₄)•4H₂O.¹ A study of the precursor is important because it apparently controls the micro structure of the final catalyst. Described here is the structure determination of VOHPO₄ hydrates obtained by the reduction of VOPO₄•2H₂O with 1-, 2- and iso-butanols.

VOPO₄•2H₂O ² was refluxed with stirring in butanol at 80°C for 24 hr. The resulting light-blue solid was dried for 24 hr. We refer to the products from 1-, 2- and iso-butanols as P₁, P₂ and P_i, respectively. X-ray power diffraction patterns of the three products are shown in Figure 1. It shows that the products P₂ and P_i are the same as VO(HPO₄)•0.5H₂O reported by Johnson et al. ³ The XRD pattern of the product P₁ from 1-butanol as a reducing agent, however, is neither that of VO(HPO₄)•0.5H₂O nor of VO(HPO₄)•4H₂O. It is considered that the product P₁ formed another type of VOHPO₄ hydrate which has not been reported hitherto.

Figure 1. X-ray powder diffraction patterns of VOHPO₄ hydrates.

IR spectra of the products P_1, P_2 and P_i are shown in Figure 2. IR spectra of P_2 and P_i which were to be VO(HPO₄)•0.5H₂O are consistent with VO(HPO₄)•0.5H₂O spectra.³ Bands at 3376 and 1643 cm⁻¹ are assigned to coordinated water in the hydrogen compound and the prominent absorption at 900~1200 cm⁻¹ range are assigned to the P-O stretching vibrations. As for the product P_1 , only spectra around 3400 cm⁻¹ are different from those of VO(HPO₄)•0.5H₂O. The envelope of O-H stretching absorptions, centered at about 3400 cm⁻¹, is composed of at least three bands at 3560, 3373 and 3040 cm⁻¹.

Figure 2. Infrared spectra of VOHPO₄ hydrates.

The weight loss of the three products P_1 , P_2 and P_i in inert atmosphere at a heating rate of 5°C/min is displayed in Figure 3. On the P_2 and P_i , VO(HPO₄)•0.5H₂O,the water is lost continuously from 300 to 450°C. The weight loss corresponds approximately to the theoretical percentage of 10.46%. The weight loss curve of P_1 is interpreted in terms of two processes: loss of lattice water below about 200°C and loss of coordination water over 200°C. At the temperature from 450 to about 500°C, water is eliminated and (VO)₂P₂O₇ is produced. The total weight loss of water was about 18.9%. The chemical composition of the product P_1 can be written as VPH₄O_{6.5}.

Figure 3. Thermogravimetric curves of VOHPO₄ hydrates.

Johnson et al.³ reported that the crystal structure of VO(HPO₄)•0.5H₂O is orthorhombic system and lattice constants a = 7.420Å, b = 9.609Å and c = 5.693Å in space group P_{mmn}D2h. Figure 4 shows the structure of VO(HPO₄)•0.5H₂O viewed in the (001) and (010) planes. VO(HPO₄)•0.5H₂O consists of pairs of VO₆ octahedrons and PO₄ tetrahedrons, and it shows a layer structure parallel to the (001) plane. The vanadium coordination sphere contains one multiply bound terminal oxygen (V=O) trans to a coordinated water molecule. The coordinated water molecule bridges two vanadyl groups. The four oxygen atoms in the equatorial positions of VO₆ octahedron belong to HPO₄²⁻ groups. Each (001) layer is linked through hydrogen bonds between water molecule coordinated at vanadyl group and the neighboring P-OH group.

770 Chemistry Letters 1995

Figure 4. Crystal structures of VO(HPO₄)•0.5H₂O and proposal VO(HPO₄)•1.5H₂O.

As the XRD patterns in Figure 1 shows clearly, the product P₁ has a different pattern from that of VO(HPO₄)•0.5H₂O. However, IR spectra in Figure 2 do not give different bands between P₁ and VO(HPO₄)•0.5H₂O except bands around 3400 cm⁻¹ which are from O-H stretching vibration. The prominent P-O stretching vibration at 900~1200 cm⁻¹ are the same. The result indicates that the (001) plane of P₁ might be topologically similar to that of $VO(HPO_4) \cdot 0.5H_2O$. The (220) line $(2\theta=30.1^\circ)$ in the XRD pattern of VO(HPO₄)•0.5H₂O is also observed in the P₁ as shown in Figure 1. Considering that the product P₁ has the same (001) plane as that of VO(HPO₄)•0.5H₂O, using the lattice constants a = 7.43Å and b = 9.62Å of $VO(HPO_4) \cdot 0.5H_2O$ for the lattice constants a and b of P₁, regarding a strong line $2\theta=11.8^{\circ}$ (d=7.97Å) as the lattice constant c of P₁, the d value of each lattice plane of P₁ was calculated and listed in Table 1. The calculated d values were consistent with the observed values of the product P₁. From the TGA results in Figure 3 it was found out that the experimental formula of P₁ is VPH₄O_{6.5}, and that the heating up to 500 °C eliminates two water molecules. Therefore, it can be written that the chemical formula of P₁ is VO(HPO₄)•1.5H₂O. The unit cell is orthorhombic with lattice constants a = 7.43Å, b = 9.62Å and c = 7.97Å.

Vanadyl hydrogen phosphate sesquihydrate, VOHPO₄•1.5H₂O, is produced in the reduction of VOPO₄•2H₂O with 1-butanol. The structural analogies between the (001) planes of VO(HPO₄)•0.5H₂O and VO(HPO₄)•1.5H₂O are established. The main differences is that one water molecule as lattice water resides in the layer space parallel to the (001) plane of VO(HPO₄)·1.5H₂O. Figure 4 shows the proposal VO(HPO₄)•1.5H₂O structure viewed in the (010) plane. VOHPO₄ hydrates obtained by the reduction of VOPO₄•2H₂O with 1-,2- and iso-butanols were activated in a mixture of 2% butane in air (SV=2400 ml·g⁻¹·h⁻¹) at 480°C. After this treatment, the catalytic activity of butane oxidation was measured. The result is shown in Table 2. The activity of (VO)₂P₂O₇ is higher with the catalyst prepared from the precursor VO(HPO₄)•1.5H₂O than that from the precursor $VO(HPO_4) \cdot 0.5H_2O$.

Table 1. X-ray powder diffraction data for proposal VO(HPO₄)•1.5H₂O compared VO(HPO₄)•0.5H₂O

	VO (HPC	VO (HPO 4) • 0.5 H 2 O			VO(HPO ₄) · 1.5 H ₂ O		
hkl	વિભાવ	dob≉d	I o be d	વિભાવ	dobed	I obs d	
110	5.88			5.88			
001	5.70	5.75	100.0	7.97	7.97	85.1	
020	4.81	4.85	2.7	4.81	4.81	1.0	
101	4.52	4.55	33.3	5.43	5.28	51.7	
111	4.09	4.11	6.5	4.73			
021	3.68	3.69	19.5	4.12			
121	3.30	3.31	24.0	3.60	3.59	14.9	
201	3.11	3.12	12.6	3.37	3.39	1.0	
220	2.94	2.95	31.1	2.94	2.94	100.0	
031	2.79	2.81	8.7	2.98			
102	2.66	2.67	15.3	3.51	3.55	13.9	
131	2.62	2.62	6.0	2.76	2.75	11.5	
112	2.56	2.57	3.8	3.30	3.27	9.5	
022	2.45	2.46	3.8	3.07			
040	2.41	2.41	4.4	2.41	2.40	16.1	
202	2.26	2.27	2.2	2.72			
231	2.23	2.24	3.3	2.32			
311	2.21	2.21	1.6	2.30			
032	2.13	2.14	2.7	2.50			
321	2.05	2.05	3.3	2.12			
330	1.96	1.96	1.6	1.96	1.96	7.0	
241	1.90	1.91	6.0	1.96			
150	1.862	1.86	7.7	1.86	1.87	16.1	
331	1.85	1.84	6.0	1.90	1.90	8.0	

Table 2. Catalytic activity for butane oxidation to maleic anhydride at 400 °C

Catalyst	S.A.	C4H10 Conv.	MA Select.	MA Yield
	(m² g-1)	(%)	(%)	(%)
from P ₁	226	56.0	87.3	48.9
P_2	9.8	31.4	94.0	29.5
Ρj	127	29.4	93.7	27.6

The thermal dehydration of VOHPO₄ hydrates into (VO)₂P₂O₇ proceeds in two ways. One is dehydration by cleaving hydrogen bonds between (001) planes, and the other is by condensation of HPO₄²⁻ groups. Therefore, VO(HPO₄)•1.5H₂O with weak hydrogen bonds in the layer space of the (001) plane is more subject to the cleavage of the layer space of the (001) plane, compared with VO(HPO₄)•0.5H₂O having strong hydrogen bonds which are necessary to retain the layered structure. Accordingly, VO(HPO₄)•1.5H₂O gives (VO)₂P₂O₇ with higher specific surface area after the thermal dehydration. Also its apparent catalytic activity is increased.

References

- 1 M.E.Leonowicz, HJ.W.Johnson, J.F.Brody, H.F.Shannon, and J.M.Newsam, J. Solid State Chem., 56,370 (1985).
- 2 I.Matsuura, in "New Developments in Selective Oxidation," ed by P.Ruiz and B. Delmon, Elseviel Science, Amsterdam (1992), p 247.
- 3 J.W.Johnson, D.C.Johnston, A.J.Jacobson, and F.Brody, J.Am. Chem. Soc., 106, 8123 (1984).